Problem Set 1 Monday June 16, 2003

Problem 1:

- 1a) Calculate the total charge stored and maximum stored energy of a 7 GeV, 100 mA beam in a storage ring with a 3.68 µs revolution period (The APS ring nominal operating condition).
- 1b) Calculate the average power of the beam delivers in (1a) assuming it is dumped in one revolution period.
- 1c) Calculate the average power the beam delivers in (1a) assuming it is slowly scraped in 100000 revolution periods.
- 1d) Calculate the average power of a 7 GeV, 100 mA Energy Recover Linac (ERL) beam.
- 1e) Which beam is more damaging to accelerator components if it is missteered?

Problem 2:

- 2a) Calculate the total photon power (in kW) for a 7 GeV, 100 mA beam passing through a storage ring bending magnet source with a 30 m bend radius.
- 2b) Assuming the dipole is L = 3 m long calculate the power per unit bend angle for the dipole source in 2a.
- 2c) Calculate the critical energy for the bending magnet source in 2a.
- 2d) Estimate the spectral function $S(\omega/\omega_c)$ at the critical frequency using the low and high frequency approximations to $S(\omega/\omega_c)$.

2e) Estimate the power per unit frequency for the bending magnet source in 2a at the critical frequency (h = 6.582 x 10^{-19} keV s).

Problem 3:

- 3a) Calculate B_{max} and K for the APS undulator A which has λ_{ID} = 3.3 cm and g = 5 mm.
- 3b) Calculate the total photon power for a 7 GeV, 100 mA beam passing through undulator A (3a) assuming N = 70.
- 3c) Calculate the undulator rms angular divergence for the first harmonic for undulator A (assume 7 GeV, 100 mA and K = 0.1).
- 3d) Calculate the power in the first harmonic per unit solid angle for the parameters listed in 3c.
- 3e) Calculate the first harmonic power per unit area using the answer in 3c and 3d at 50 m.

Problem 4:

- 4a) Consider a charged particle moving in a constant magnetic field perpendicular to this page (see the figure). Write an expression for the bend angle θ in terms of the arc length parameter s and the radius of curvature ρ .
- 4b) Write the rectangular coordinates of the point (s,ρ) in terms of s and ρ .
- 4c) Derive an expression for the slope of the tangent to the charged particle path dy/dx in terms of s and ρ .
- 4d) Write to 3rd order in (s / ρ) the difference between dy/dx and θ .
- 4e) What is the maximum angle θ such that approximating the angle of the particle trajectory with respect to the x axis $\Delta x' \sim dy/dx \sim \theta$ is good to 1 %?

Problem 5:

In a drift space, charged particles follow straight lines. Given that the beta function in a drift space can be parametrized as

$$\beta(s) = \beta^* + (s-s^*)^2/\beta^*$$

explain why the formula

$$x(s) = [W_x \beta_x(s)]^{1/2} \cos[\psi_x(s) - \psi_{0x}]$$

is the equation for a straight line.